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ABSTRACT 

Computer Architectures consisting of many thousands of pro- 
ceasing elements have been proposed and studied in the literature. 
In many cases, the motivation for buildmg these systems is to 
speed-up large scale scientific computation such as the solution of 
elliptic partial difierential equations. To provided a basis for com- 
paring architectural alternatives, it is helpful to analyze the vari- 
o m  classes of algorithms that might be well suited to a highly 
parallel implementation. This paper considers two existing varia- 
tions of the Multigrid technique that have been considered suitable 
for parallel computation and describes a new algorithm which is 
designed to  exploit a greater level of concurrency than the previ- 
ous schemes. Based on archrltectures proposed in the literature, a 
series of interprocessor communication models is developed to  
serve as a basis for comparing the selected algorithms. The algo- 
rithms are tested experimentally and their performance for each 
communication model is illustrated. 
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1. INTRODUCTION 

Most recent research in parallel algorithms for solving elliptic partial 

differential equations has enphasized direct methods. This work ranges in its 

degree of parallelism from the systolic band solvers of Kung and Leiserson [ 181 

to a full nested dissection elimination (George and Liu [21] and Gannon [lo]) and 

the fast Poisson solvers of Sameh, Chen and Kuck [25]. In the case of an elliptic 

partial differential equation on a square domain that has been discretized as a 

m by m mesh, the band solver requires O(m2) processors and m2 parallel time 

steps. The nested dissection method requires the same number of processors 

but solves the problem in cm steps where c is a rather large copstant. If the 

problem is the Poisson equation, the Sameh-Kuck scheme requires only 

c *tog (m) steps where, in this case, c is a small constant. 

To devise a scheme that is more general than the fast Poisson solver, but 

retains sublinear time bounds it seems necessary t o  turn t o  iterative algo- 

rithms. While there is a considerable body of work devoted to relaxation 

Work supported by NSF grant MCS-8109512 and ICASE, NASA Langley Research Center. 
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methods for vector processors, research on highly parallel iterative algorithms 

has been limited. Variations on the S.O.R. and Conjugate Gradient methods have 

been studied by Adams [l] for the mesh-connected Finite Element Machine. 

Baudet [5] considered chaotic relaxation algorithms, which can be performed on 

parallel computers. Brandt [7] has considered a parallel version of the mul- 

tigrid method for which it can be shown that solving an ehptic problem to within 

a constant multiple of the truncation error requires no more than O ( l o g 2 ( r n ) )  

time steps on m2 processors. 

In this paper, we extend Brandds work by analyzing the performance of 

several multigrid algorithms suitable for parallel architectures. The plan of the 

paper is as follows. In section 2 we describe two algorithms derived directly 

from their standard serial formulations and give a simple analysis of the result- 

ing par alle 1 c omp ut a tional complexity . 

In section 3 we show that the multigrid family may be extended to include 

an algorithm well suited to very h g h  levels of concurrency. Each of the three 

algorithms considered here is easily described in terms of a small set of array 

valued parallel operators. To evaluate the performance of these methods we 

analyze the behavior of this set of operators in terms of the time complexity 

with respect to various inter-processor communication models. This analysis is 

given in section 4 for several classes of proposed VLSI and Multi-Microprocessor 

system architectures. In section 5, the communication cost models are com- 

bined with a set of numerical experiments to yield an approximate profile of the 

behavior of this family of algorithms over a wide range of highly parallel sys- 

tems. 

Scstion 6 considers the case of limited processor systems, and considers 

the extrapolation of experimental results to three dimensional problems. 
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2. MULTIGRID ALGOFUTHMS. 

Of the wide variety of multigrid algorithms considered in the literature, two 

seem likely to perform best on parallel computers. The first of these is an algo- 

rithm related to the type of method considered in most theoretical research. 

The second is one type of multigrid algorithm commonly used in practice. 

Multigrid algorithms are equally applicable to finite element or finite 

difference discretizations of elliptic boundary value problems. Suppose, for 

example, we wish to solve the linear system created by a discretization on a rec- 

tangular grid. To solve this linear system, multigrid algorithms employ two 

basic operations - relaxation iterations on this grid, and solution of related prob- 

lems on a coarse grid. If the original grid has mesh spacing h, a coarse grid with 

mesh spacing 2h is usually used. An approximate solution of the given elliptic 

boundary value problem is often obtained on this coarser grid to provide a good 

starting value for iteration on the original fine grid. But, more importantly, 

solution of related problems on t h s  coarser grid can be used to accelerate the 

convergence of the iteration on the original fine grid. Solving these related 

coarse grid problems efficiently reduces the long wavelength error components 

on that grid. This leaves only error components on the fine grid having 

wavelenghts comparable to the mesh spacing, and these can easily be removed 

by point iterative methods. 

Fedorenko [ 9 ]  observed the related problems on the coarser grid are again 

discretized elliptic boundary value problems and can be solved by the same 

techniques. This leads to a recursive algorithm where the solution of the prob- 

lem on the original grid having mesh size h requires solution of a sequence of 

problems on the coarser grid with mesh size 2h. Each of these coarse grid prob- 

lems can be solved using an iteration periodically accelerated by solution of 

problems on even coarser grids having mesh size 4h. The recursion is carried to 
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a depth where one encounters a grid so coarse that either direct or iterative 

methods have trivial computational cost. 

To describe such algorithms more precisely, suppose we have a family of 

finite element spaces [ M i ] & o ,  nested in the sense that 
& 

Mi-ICMi ,  1 Si S n ,  

and suppose the elements of space Mi have size approximately 2+. We will let 

superscripts denote membership in the corresponding space, so that ut will be a 

function in M i ,  Let & be the finite element operator approximating the elliptic 

operator on space Mi. Also, at each level, let P be a parameter controllmg the 

number of recursive calls made to the next level, let J be a real parameter 

whose ceihng is the number of smoothmg iterations performed at each level and 

let T be the rate at which J changes from level t o  level. The algorithm can then 

be described by the pseudo Pascal procedure below. 

Procedure MG( var u i ,  f i :  function: i .P integer; r,J: real); 
var v i -1 .  g i - I :  function; 

j: integer; 

begin 
ifi=Othen 

solve &ui = f by Gaussian elimination 
else begin 

perf o m  J Jacobi iterations to approximately solve &uc = j" : 
z l i - l  .- .- 0 

(* generate a residual for a coarser gird problem *) 
gi-1 := ni - I ( f i  - 4 u i ) ;  

ui := U i  + qt&i-l); 

for j := 1 to P do 
MG(v'- ' ,  g i - ' .  i-1, P. r, JV); 

end; 
end; 

Here ni-1 and 9i are projection and injection mappings used to accomplish the 

change of bases required in going between Mi and Mathematically, 

qti : Mi-1 ---+ Mi 
is just the natural injection of Mi-1 into Mi written in terms of the finite element 
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basis for these spaces. The projechon 

ni : Mi ----+ Mi -1 

is the adjoint of ' k i ,  thought of as a linear transformation between finite dimen- 

sional vector spaces. 

Procedure MG can be used to solve elliptic boundary value problems with an 

optimal complexity bound. That is if N unknowns are needed to represent a 

solution in the finest finite element space Mn, one can obtain a solution which is 

accurate to within truncation error of the finite element equations for Id,, in 

O ( N )  serial operations. To obtain this optimal bound, one uses procedure MG 

first to generate a good solution in the coarsest space Mo. Then using this soh-  

tion in M o  as a starting value, one uses MG to  generate a good solution in M1, and 

so on. If instead, one applied procedure MG directly on the first space M,,, 

without first obtaining a good starting value from the coarser grids, an 

O(lV*log ( N ) )  bound would result. 

. 

Though the method used to obtain a good starting value for multigrid itcra- 

tion in M, is important, our main focus will be on the computational complexity 

and convergence rate of the iteration in M,. To this end, we define a procedure 

Outer, to carry out this iteration. 

Procedure Outer(var un , f n: function; n,P,k: integer; r,J: real); 
v u  j: integer; 

begin 
for j:= 1 to k do 

MG(un,  f" ,n,P,r,J): 
end; 

A number of multigrid algorithms considered in the literature are 

equivalent t o  various choices of the calling parameter for Outer. We look briefly 

at three possible choices of these parameters: 
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l . P = 2 ,  r = l  

2 . P = l ,  r > 2  

3 . P = l ,  r = l  

P controls the number of recursive calls procedure MG makes to itself in order 

to solve the related coarse grid problems and r controls the relative number of 

inner iteration performed in these recursive calls. Thus, either r>l or P>1 

causes more inner iterations to be performed on the coarse grids. The first 

choice is equivalent to the type of multigrid algorithm considered in most 

theoretical work on multigrid methods. In particular, such algorithms are exam- 

ined in Fedorenko [9], Hackbusch [14], Nicolaides [24], and Bank and Dupont 

[2]. The second choice is a variant described in Van Rosendale [30]. The third 

choice corresponds to one of the types of algorithms considered by Brandt [E], 

McCormick [ 231 and others. 

For all three choices of the calling parameters, it is possible to prove the 

the multigrid iteration in procedure Outer has a spectral radius p < 1 indepen- 

dent of the number of levels n, i.e. the convergence rate is independent of the 

mesh spacing h = 2*. Let Iu,]ikpo be the sequence of approximate solutions 

occurring in procedure Outer. That is, let uo be the approximate solution in M,, 

before the first call to MG, and let u1 be the approximate solution before the 

second call. Also let 21 be the true discrete solution, and suppose the elliptic 

boundary value problem is second order, self adjoint and regular for a < 0. 

Then one can show 

Theorem 2.1: Let P = 2 and r = 1 or let P = 1 and fix r > 1. Then for any 

a>O there exists k = k(P, r, Q), such that 

ll%c - 41 < Q b o  - Ell 
The norm here is the natural energy norm but the same result holds for the 

L2 norm on problems that are H2 regular. In either case, the spectral radius 
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satisfies p 9 o, since Mn is finite dimensional. 

The proof of theorem 2.1 is given in Bank and Dupont [2] for the case P = 2, 

r = 1, and in Van Rosendale [30]  for the other case. There is an error in the 

extension to locally refined grids in Van Rosendale [30], but for quasi-uniform 

grids, such as those considered here, there is no difIiculty. 

For the th rd  choice of parameters considered, P = 1, r = 1, an analog of 

Theorem 2.1 has been proven recently by Braess[G], Hackbusch[ 151 and McCor- 

mick[23]. Thus it is reasonable to assume that the iteration in procedure Outer 

converges about equally fast under each of the three choices of the c w  

parameters being considered. This implies that, up to a constant factor, the 

serial cost of reducing the error by a fixed amount will be the same for all three 

methods. 

On a parallel computer, the situation is quite Werent.  The first choice of 

parameters, P=2, r=l, will perform quite poorly, since the recursion involved 

amounts to a binary tree traversal. The second choice, P=l ,  r>l, should be 

better and the third choice, P=l , r=l ,  should be the best, since the least work is 

done on coarse grids with this choice. 

Calculating the computational cost for each of the multigrid iterations in 

procedure Outer bears out these conclusions. Assume we have a total of N=me 

processors that may operate in parallel. The operators L, n, ck are computed as 

sparse matrix multiplications. For example, let Ai,,, b = l o g ( r n )  be deflned in 

terms of the standard bilinear local finite element basis, {vu ]ijrl,n, on an m by 

m rectangular mesh where the basis function rprj is non-zero only on the node 

with coordinates (ij). If a function u is written 

then the coefficient of &, (u) at node (k,l) is 



L b  (u)kl = x & L , i j % j *  
i j  

where the coefficient Lkl.i j  is non-zero only for the nodes neighboring the node at 

( k , l ) .  Consequently, if one assigns one node to each processor and ignores (for 

1 

2 

now) the communication delay in transportmg the values U.+J from node (iJ) to 

each of its neighbors, the time to compute L ( u )  is independent of N. Similarly, 

2 1 c (J+2)"'2 

1 l<r<2  c ( J + Z ) N  l ogp  

is computed a t  each node as local averages of values from neighbor nodes. 

The injection is accomplished by first mapping % to the odd indexed nodes of 

Mb+i,  i.e. let 

1 

u'g = ui-l f o r i  and j odd - 
2 ' 2  

c (J+Z) log ,N 

= o  o t h e n . u k .  

The coefficients of \kb+l  are given by 

The adjoint of \kb+I, IIb is expressed as 

1 

3 .: =-I 
n b ( u ) k l  = ~ ~ / 2 ) ' s ~ + ~ f ' u Z k - l + 8  ,Zl- l+t  

Again ignoring communication costs, m where k and 1 each range from 1 to - 
2 '  

the parallel time for both \k and ll is independent of N ,  and is roughly equal to 

that required to compute L ( u ) .  If we set the time for one of these operations as 

unity, then the total time required per inner iteration in procedure Outer is: 

1 Parallel Time for One Outer Iteration I 
Time I c m e  /I I 7- I I 

Here c is a constant near one and J is the number of Jacobi inner iterations done 
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on the finest space Mn. N is the number of nodes or variables of H n .  

To solve the elliptic boundary value problem to within truncation error, one 

could first use procedure Outer with some fixed value of .k on the coarsest 

space M o l  then use the result as a starting value for Outer applied to MI, and so 

on. This would yield a good solution in the finest space Mn. The computation 

time would be the same as given above but multiplied by a factor of log4N. Thus 

we have: 

I Parallel time for a Complete solution 

t i m e  
I 1  

2 11 ck (J+Z) ( log*N)N”2  

2 lo&N ck (J + Z ) ( l o g 4 N ) N  

3. CONCURRENT l T w n T O N  

Though the estimated parallel solution time for the algorithms just con- 

sidered look reasonably good, one can ask whether these algorithms ex@oit 

parallel architecture as fully as possible. Suppose, for example, one has a 

number of processors comparable to the number of fine grid mesh points. 

Then when iterating or interpolating on the finer grids, processors will be well 

utilized. However, when iterating or interpolating on the coarsest grids, 

processor utilization would be quite poor. In this section a new algorithm 

is described, which is intended to utilize parallel architecture more fully 

than the algorithms in the last section. 

The effectiveness of multigrid iterative algorithms can be viewed in a 

number of ways. One way of looking at  it is to  note that point iterative methods, 

such as S.O.R. are effective at  reducing Fourier error components h a v q  



wavelengths comparable to the mesh spacing, but 'do poorly on error com- 

ponents having much longer wavelengths. Multigrid iteration is effective, since 

it reduces such long wavelength components on coarse grids, where the mesh 

spacing is comparable to their wavelength. 

In this view, one is using the projection operators in multigrid algorithms 

to decompose residuals into their short and long wavelength Fourier com- 

ponents. Pushing this idea slightly further, one can use these projections to 

decompose a function on the finest grid into components on every grid. In this 

way one can obtain a crude analog of the Fourier decomposition of a fine grid 

function, which we will call an "approximate spectral decomposition." 

To see how this would work, let gn be a given function in the finest finite 

element space, Mn , and letpiEMa , OSiSn, be a family of functions, one in 

every grid level. Then one can consider the following sequence of operations: 

p" : = g n ;  
for i := n dormto 1 do beein 

Here step 1 in the loop sets pi'' to the smooth part of p i .  Because the 

interpolation +a is the natural injection between finite element spaces, step 2 

reduces pa ,  so that p i+p i - '  is conserved on each pass through the loop. 

On complehon of these operations, one has 

g" = g p i .  
i = O  

Here p o  will be the smoothest part of q " ,  and pn the most oscillatory. The 

functions p i  , OSisn, are increasingly oscillatory with increasing i, 

A simple multigrid algorithm can be based on these ideas. In order to 

solve L, u" = f n ,  one could carry out the following sequence of operations: 
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1. Form an approximate spectral decomposition of f : 

2. Approximately solve the problems: 

&vi = s i ,  O s i s n ,  
by point iterative methods. 

3. Sum the solutions on all grid levels: 

The point iterative methods in step 2 here would converge rapidly for the 

first few iterations on each grid level, but would then slow down. This rapid ini- 

tial convergence occurs, since the approximate spectral decomposition in step 1 

makes each of the data functions gi  one of the most oscillatory functions in its 

finite element space Mn, However, after a few iterations, the residual on each 

level would be relatively smooth, and the convergence correspondingly slow, 

To avoid slowly convergent iterations in step 2, one could perform only a few 

iterations on each level, and then proceed to step 3. The resulting approximate 

solution ,Iln might not be very accurate, but could be iteratively improved by 

repeating the algorithm using the residual as data. Such iterative improvement 

would be necessary in any case, since the iterations in step 2 invert o. different 

discrete operator on each grid level. Each of the operators {I,,]&' approxi- 

mates the fine grid discrete operator , but for small i t h i s  approximation can 

be quite poor. 

The algorithm just described would be reasonable on a serial computer, but 

is not as parallel as we would like, for the architectures to be considered. The 

iteration in step 2 of this algorithm can be done concurrently on all levels, but 

the interpolations in steps 1 and 3 must be done level by level. To avoid this bot- 

tle neck, we look at  a modified algorithm in which the amount of interpolation 
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needed is minimized. The elgorithm is a two step iteration whch may be 

sketched as follows: 

for i := 1 to itmz do 
bcgin 

end 

1. 
2. 

peri'orm J smoothing inner iterations on each grid level 
interpolate solutions and residuals between adjacent levels 

The iterations in step 1 here can be done in parallel on all grid levels. The same 

is true for the interpolations in step 2, hence the name "concurrent iteration." 

Figure 3.1 shows the data paths in this algorithm. 

f i g w e  3.1 &id Level  Data now of C o n c u r r e n t  I t e r a t i o n .  

Rzhicving data paths such as these, whch can easily be mapped onto parallel 

architecture, is the underlying motivation for thrs algorithm. 

Mathematically the algorithm required is somewhat more complex than 

those in thc last section. First we need a procedure to shift the data in a family 
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of functions, {pi]in,0 one level, by performing a sequence of injections. Defining a 

data type "vecffn" representing such a family of functions, this procedure, 

mznj , is given below. 

procedure minj (vwp : vecffn); 
var i : integer. ij : vecffn; 
begin 

fori:= 1 tonpardo 

Lori:= 1 tonpardo 
4 i  .- .- , p i p i - l ;  

case i of { 
0 : p i : = o ;  
n : p i  := p i  + q i ;  
otherwise : p i  := qs  : 

1 
end; (*of minj *) 

In this procedure, both the loops explicitly described, and the loops hidden 

in the interpolations can be done entirely in parallel. The computation 

may be viewed as a vector of array operators. Also note that this procedure 

n 

i = O  
conserves p in the sense that the s u m  c \k, ..!Pi+rps remains unaltered. Because 

the operator is the natural injection of a subspace of a vector space, the 

n 

i =O 
operator +i+lzi is nothing more than the pointwise sum of { z ( ) ~  

i= 8 

viewed as functions over the defining domain. In the following paragraphs we 

abbreviate this operation as Z i .  
n 

i = O  

A procedure similar to  mznj can be given to perform projections between 

grid levels. This operator, mprj is described below. 



procedure mprj (varp : vecffn); 
var i : integer; S : vectfn; 
begin 

for i := 0 to n-1 pardo 

fori:= Otonpardo 
q i  .= nipi+l ; 

case i of { 
0: P i  * -  . -pi  + q' 
n: p' := p' - +i-lq.i-l 

otherwise: p i  := p' + q i  - 9i-Igt-' 
I 

end; (* of mprj *) 

This procedure can also be done entirely in parallel and conserves the s u m  

c p i ,  Also note that n successive calls to this procedure would perform the 
i - 0  

approximate spectral decomposition of p discussed at the beginning of this sec- 

tion. 

The two procedures just described, mprj  and m k j ,  are the basis for the 

concurrent iteration algorithm. Suppose we also have a procedure 

jacobi ( v j , q j ) ,  which approximately solves 

Livi = Qi 

by performing a fixed number of Jacobi smoothing iterations. Then the con- 

current iteration algorithm for the discrete problem 

is as follows 
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procedure concurrent (var un , f " : function: J. itmx : integer): 
(* performs itmx concurrent multigrid iterations to  

approximately solve L,un = f IL 

v u  V ,  d. ij : vectfn; 
i.j : integer; 

*) 

begin 
for j := (I to n pardo begin ( initialization *) 

.j := 0; 
q j  :=o; 

end; 

1. q n  := f"; 

2. 

(*put datain ij *) 
ior i := 1 to itmx do begin ( outer iteration loop *) 

Lor j := 0 to  J pardo 
jacobi (v j  , q j ) ;  (* performs inner relaxations *) 

for j := 0 t o n  pardo begin 
3. d i  := L ~ .  , j ;  
4. qi : = q ~  - d i ;  (* compute residual *) 

(* compute data corresponding to u j *) 

end 

5. mP4 (s' 1: 
6. minj(5); (* shift V to h e r  grids *) 
7. minj@); (* shift 1. to finer grids *) 

(+: shift S to comer  grids *) 

for j := 0 t o n  pardo 
q i  := g j  + d i ;  (* put a~ data in Z *) 

end; (* of outer iteration loop *) 

u n  : = . n ;  

end; (* of procedure concurrent *) 

The intuitive meaning of the steps here is as follows. In step 1, the func- 

tions { q j ] r = o  contain the data and satisfy 

In step 2, procedure j a c o b i  performs a few relaxation iterations on each grid to 

approximately solve the problems 

L j v j  = q j ,  O 5 j S n .  
Thereafter, the data d j  corresponding to  vi  and residual q j  on each level are 

computed in steps 3 and 4. At the end of step 4 data is conserved in the sense 

that 

j =O 



- 16- 

holds up to roundoff error. 

The heart of the algorithm is in steps 5, 6 and 7 .  In step 5, residual data in 

S is shifted to coarser grids t o  speed convergence of procedure jacobi. Ideally, 

we would want ij to be an approximate spectral decomposition of the residual, 

with each q j  in the null space of the projection n: Hj + Mi-l. This would mean 

each q j  was one of the most oscillatory functions in Mj, so subsequent Jacobi 

iterations woud converge rapidly; however, in order to maximize parallel speed, 

mprg is only called once here instead of the n-1 times required to complete the 

approximate spectral decomposition. 

Steps 6 and 7 shift the approximate solutions {U’]?=C and corresponding 

data {d j ] r=o  to finer grids. The idea here is to shift the approximate solution 

functions {uj]j”r0 to the finest grid, where un will eventually converge to the true 

discrete solution. Equally important, the corresponding data must be simul- 

taneously shifted or procedure jacobi will go on solving for it, leading to diver- 

gence of the outer iteration. By shifting an approximate solution vj and 

corresponding data d j  to the next finer grid level, very little new residual will be 

created. To be precise, this newly created residual will be 

T ~ + I  = L j + 1 9 j + l v j  - ckj+,dj 

Ths residual ~ j + l ,  which will be small i f  Lj and Lj+l  approximate each other well, 

will percolate between grid levels just as the original data f n  did, and will even- 

tually be solved for as well. 

One could give more algebraic explanations for this algorithm, but since no 

convergence results have been proven, we content ourselves with this heuristic 

description. The effectiveness of this algorithm is demonstrated by our  numeri- 

cal tests. If this algorithm becomes of practical value, one might wish to search 

further for theoretical convergence results. 
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In this section we consider the complexity issues associated with the algo- 

rithms of the previous section when programmed on a variety of hghly parallel 

architectures. More specifically, we give a rough classification of hardware sys- 

tems in terms of the relative costs of data movement and arithmetic steps 

required for the basic operations L ,  \k, and II in the multi-grid family of algo- 

rithms. Each of the systems described here will be assumed to have a very large 

number of relatively simple processors, each having a local memory (or a seg- 

ment of a shared memory) large enough to hold its own program and the data 

associated with at  least one node of the grid (the real values f ,u ,v ,d  Ig from the 

previous section). The basic distinction made between the architectures will be 

in terms of the structure of the inter-processor communication networks. 

Given an elliptic p.d.e. defined on a domain which can be mapped into a 

square mesh of dimension a by a where a = 2 " + l ,  an ideal parallel architec- 

ture for the multi-grid algorithms described above would be a network of pro- 

cessors configured into n levels where the ith level is a square grid of edge 

dimension Zi+1.  The interconnection structure is illustrated in figure 4.1. The 

basic operations of L, \I, and ll are easily accommodated on this structure. The 

Jacobi smoothing is defined in terms of the operation L ( u )  which, when approxi- 

mated with a 5 or 9 point template, involves communication only along the 

nearest neighbor connections in the mesh. As described in section 2, Injection, 

\k, and Projection, Il are defined by a nearest neighbor "averaging template", of 

the same complexity as the L ( u )  operation, which is preceded (followed) by a 
0 

mapping between the nodes of the coarse grid at  level i and the odd indexed 

nodes of the finer grid at level i + 1. 

The network in figure 4.1 completely reflects the inter-process data flow of 

the multi-grid algorithms. Consequently, the problem of programming these , 



Figure 4.1 Basic M u l t i - o r i d  Aacessur A m q .  
In the horizontal planes, each processor is connected to its 8 nearest neigh- 
bors (only 4 neighbor connections are shown). lntergrid connections map 
p-ocessor [s , t )  an level i to processor (2s -1,2t -1) in level i-I. 

methods on other systems reduces to the problem of emulating this network in 

the commumcation scheme of the architecture at  hand. This task will be stu- 

died for. four basic classes of b g h l y  parallel computer architectures. 

Let Rj be the parallel time required to complete a Jacobi relaxation on grid 

j .  3milarly, let I j  and Pi bc, respectively, the complexity of \k and ll on the ja 

g:d. In gciierill the quantity Rj will be a sum of three terms: the time required 

to coiiiplcte the numerical cornputatlon carried out a t  each processor; the over- 

!lead tiiiie required by a processor t o  send and recieve messagcs from each of 

its neighbors; and thc actual trniisit time required for message passing. The 
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relative size of these terms will vary widely from system to system. The com- 

munication software overhead for an asynchroneous MIMD system typically in- 

volves complex butrering and handshaking protocols, and may dominate the ar- 

ithmetic computation. For synchroneous, highly parallel VLSI based systems 

the communication overhead is very low but data transmission times through 

. .  

lenghty data paths or complex switch networks can be quite large. In general, 

the arithmetic and communication-software overhead terms in Rj will roughly 

equal the corresponding components in I j  and Pj. The primary difference 

between Rj and the latter pair is that Il and 9 require the additional "inter grid" 

data movements. 

Our approach to characterizing these differences will be to study four 

classes of hghly parallel system designs and extract four analyt~cal models for 

the added comunication cost of the "inter grid" transmissions. 

The simplest cost model is one in which all communicationa between pro- 

cessors have same complexity, i.e. 

Ij = Pj = Rj = R1, j=l , . . ,n (4.1) 
While t h s  estimate will hold for for some model architectures such as f3gure 4.1, 

it does not hold in many of the interesting cases which represent machines 

either planed or under construction. 

4.1 Mesh Connected Arrays. 

Systems such as the Finite Element Machine (Storaasli [29] Jordan [IS]) or 

the Massively Parallel Processor (MPP) (Batcher [4]) are configured as planar q 

by m nearest-neighbor connected grids of processors. Figure 4.2 shows 3 

methods for mapping the many layered MG network into a planar mesh. 4.2a 

and 4.2b show embeddings that are suitable for the Concurrent Iteration algo- 

rithm. Because computation must proceed in parallel on all n grid levels, each 

level must be explicitly represented. 
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Fgure 4 . 2 ~  q=m 

Of the two methods, 4.2b is clearly the most efficient packmg of the mul- 

-2 3 WL-l versus q=3m-1), but 4.2a has advantages that 2 
tilevel structure (T= 

are described in the next section. Figure 4 . 2 ~  shows the natural embedding for 

the multigrid algorithms of section 2. In this case the separate grid levels are 

processed sequentially and therefore one may "overlay" them on the host grid. 

The shortcoming of all three structures lies with the emulation of the data paths 

connecting the grid levels together. Given an array of values associated with a 

grid at  level j , the data movement required to map 
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this to level j +1 can be decomposed into two "expand" operations. Assume that 

each processor may read from and write to any neighbor and that we have a 

chain of m processors such that processors 1 through m/ 2 each hold an item of 

data. An "expand" move is defined to be the sequence of steps required to get 

the processor at  node 2i to  hold the data item from node i from lS i Im/  2. The 

inverse operation is known as a "compress". The reader should have no trouble 

seeing that the processors in a nearest neighbor network can complete an 

expand or squeeze by a set of parallel "bucket brigade" write-read steps in time 

m / 2 .  

By applying the expand along each row in parallel and then along each 

column in parallel the data item in position (i,j) is moved first to  (2i-1,j) then to 

(Zi-l,2j-l). When applied to the embedding 4.2a all subgrids are expanded in 

parallel in 2m-2 steps. For embedding 4.2c, the i" subgrid is expanded in 2'-2 

steps. (Embedding 4.2b requires a more elaborate algorithm, but can be com- 

pleted in 3m/2 -2 steps). 

Clearly, embeddings 4.2a and 4.2b permit simultaneous relaxation on all 

grids and, because relaxation is independent of the size of the grid, one has R, = 

R3 for j= l . .n.  Taking the communication algorithm described above into 

account, one obtains 

Ij = Pj = R1 + c12j for embedding 4 . 2 ~ .  (4.2) 

Ij  = Pj = R1 + clm for 4 . 2 ~  and 4.2b (4.3) 
where c is a small constant that relates the time required for a read and a write 

operation to R1. 

4.2 Mlcsh-ShfIle Connected Systems. 

I t  has been proposed by Grosch [13] and Brandt [6] that, because of the 

awkward nature of the intergrid communication algorithm described above, the 

communication network of the mesh system be enhanced by the addition of a 
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shufT!e network in each row and column. The shufne connection, shown in figure 

4.3  ior one row of B processors, 

f igure  4.3 Shuffle connection o n  Bmdes.  

provides the exact connections that are simulated by the expand or compress 

described in 4.1.  In particular, processor i 

2i-1 for is- Embeddlngs 4.2a and 4.2~ 
2 '  
Tl 

is b e c t l y  connected to processor 

have the property that level j is 

mapped to level j + 1. The expansion via the shutne permutation is illustrated for 

a row of processors from figure 4.2a-in figure 4.4. 

L1 L2 =3 
-1 4 

-- . 
21*1 22*1 23+ 1 

m - 3 n - 1  

figure 4.4  Expansion of three levels f r o m  m e  row of embedding 4 . 2 ~ .  

Levels L1 and Le are directly connected into the odd subsequences of levels L2 

and Ls respectively.  

The complexity of t h s  operation is dependent upon the effect of propogation 

delay along the long wires in the network. In general, the longest line between 

level i and lcvel i + 1 will grow as Z i .  Consequently the cost model described by 

equations 4.2 or 4.3 will apply. If we assume that signal propogation is neghgi- 

ble then model 4.1 is applicable. 
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4.3 Permutation Networks. 

A number of &hly parallel architectures have been proposed that use 

some form of general permutation network for processor to memory or proces- 

sor to processor communication. These include the Flow Model Processor of 

Burroughs [22], the PASM system [27], Ultracomputer [ZS] and the TRAC system 

[l?]. The connection networks used in these systems can each be viewed as a 

network of l o g ( r n )  stages of rn switches per stage. The family of data move- 

ments that can be simultaneously executed on such a network is usually a sub- 

set of the full permutation group. The Q" network of Lawrie [lQ] (shown in 

figwe 4.5 for m=B processors ) can be shown to admit a set 

mure 4.5. 0'' network f o r  B p c e s s m .  

of permutations that include uniform shifts and the compress operation 

described above [ 113. Its inverse, the Q network, can execute uniform shifts and 

the expand operation. Because ALL communications must pass through log (m) 

switch stages, the cost model is equivalent to the constant delay model in equa- 

tion (4. l) where the constant depends on the size of the largest grid. 

To accelerate the communications on an individual grid level, it is possible 

to  augment the 0-l network with a mesh connection as diagramed in figure 4.6. 

I t  is shown in [ll] that this structure is well suited for a class of locally refined 
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c n Network 

Mesh coordinated 
Proemasor array 

F i g w e  4.6, Mesh4 system. 

grids as well as the uniform grids studied here. In this case, the mesh communi- 

cations are uniform but the intergrid messages must traverse n=Log (m)  switch 

stages. The appropriate model for both standard multigrid and Concurrent 

Iteration is given by 

pi = Ii = R,, + c n  (4.4) 

4.4. Direct ITSI Embedc3ings. 

All of the preceding architectures may be viewed as directly embedable in 

silicon for VLSl implementation. Unfortunately, they do not all possess proper- 

ties considered desirable by current design criteria. In particular, the surface 

area of a chlp is reguarded as an important resource. Designers are encouraged 

. to provide area optimal embeddmgs of any network. A disadvantage of the 

shufIle exchange graph is that it may be shown t o  require area of order 

) [20] for m nodes. The mesh.embeddhgs in figure 4.2 require area m2 

log2(m)  
O( 

tliat is h e a r  in the number of nodes, but the intergrid algorithm is complex. 

Figure 4.7 illustrates a linear area embedding of the complete multigrid network 

(figure 4.1). Ths structure is dlrectly programmable on the proposed CHiP 

archtecture [20] and has the further advantage that all connections are 
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F t g u r e  4.7. C'iP Processa  Embedding. 

completely implemented, which implies that the communication algorithm is 

simple. Unfortunately this method has one major drawback. The length of the 

data paths for the coarse grids grow exponentially with the maximum level of 

refinement. If one assumes that the propagation delay is linear in the length of 

the data path, then the appropriate cost relation is given by 

(4.5) pi = rt = R~ = R~ + c 2 n 4  
As with the s h a l e  network of section 4.2 one may wish to assume that c is small 

enough to be negligible. 

The ideal embedding of figure 4.1 into silicoln would be one that has area 

that is linear in the number of nodes but has an upper bound (independent of n) 

on the length of the longest edge between two processors. Unfortunately, this 

pair of requrements for 4.1 can be shown to be unachievable. 

ti. I4 urn cried Experiments 

Theoretical computational complexity bounds have not been established for 

all of the multigrid algorithms considered here. Also, even when they are 
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available, these bounds tend to  be highly pessimistic. In this section we con- 

sider a sequence of numerical experiments designed to  ascertain the practical 

value of the algorithms described above. This approach has the advantage that 

the impact of changes in the computer architecture on the choice of method is 

relatively easy to  assess. In particular, the relative cost of data communication 

I is found to have a major impact on the choice of algorithm. 

~ The four communication models hom section 4 are summarized in table 5.1 

for a n level multigrid structure. 

I I model relations 

Table 5.1 I Communication cost models. 

The constant c is hardware implementation dependent. 

As indicated in section 4, the actual performance of any of the algorithms 

on a specific machine will depend on the particular design and hardware. In 

most cases the appropriate model is a linear combination of the constant model 

and two or three of the others, i.e. 

Pi = I j  = Rj  = R,, +c ,2j +c 2n +c 32n-j 

for some constants cl ,  c2 and cg.  Rather than guessing a t  the values of these 

constants, an accurate profile of performance can be obtained by examining 

each component cost model separately. That is, each algorithm is tested 

against each of the cost models in table 5.1 with c =1, and Rn =l.  For each algo- 

rithm and each model, these measurements yield an empirically derived 
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performance function 

Fhgorithm. ; number of grid levels -----) execution time. 

Then, given the constants cl, ..., c3, and Rn for a particular hardwarelsoftware 

system, the performance of algorithm X as a function of problem size would be 

pre&cted from 

(Rn -c 2-c S)FX,canst I- lFX.&g + 2FX.ltnsm + c 3 F X . l z s r *  

Because our primary concern is the relative performance of the algorithms 

described in sections two and three under dlfferent parallel communication 

models, we have made relatively little attempt to  "tune" the inner iterations. All 

methods were tested using the same Jacobi inner iteration with the same near 

optimal relaxation parameter. In a "production" code one would want to try 

Chebyshev acceleration and various other point relaxation techniques, such as 

red-black S.O.R. One could also consider inner iterations involvmg tridiagonal 

solvers, such as A.D.I. or Zebra relaxation, since there are fast parallel algo- 

rithms for band matrices. (Care must be exercised with the latter techniques 

because they substantially add to  the communication complexity of the method 

and the fastest such algorithms introduce stability problems that must be dealt 

with.) We note, however, that any such optimizations are likely to improve all 

three methods tested below in an nearly equitable manner. (A slight edge in 

inprovement may go to  the Concurrent Iteration algorithm because, as it will be 

shown, it depends most heavily on the spectral radius of the inner iteration). 

Each algorithm was tested for each problem on grids of size rn by m where 

m = 2n+1 and n ranges from 3 t o  6, i.e. for algebraic systems of size 49, 225, 

961, arid 3969. In each test the number of inner iterations was held at J = 4  

(changes in the value of J modified the scale of the result but not the basic 

character.) The three methods tested are the concurrent iteration of section 3, 

the Log(m) time per Outer iteration scheme (P=l ,  r= l )  of Brandt which shall be 
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refered t o  as LO Multigrid (or LO-MG), and the root(m) time per Outer iteration 

method (P=l ,  r = 1.2) of section 2 which we shall call RO Multigrid (or RO-MG). 

The model problems studied here are all two dimensional scalar equations. Of 

the many features that should be tested to  validate an iterative method for ellip- 

tic equations, we have selected three: the rate of convergence to  a point below 

the truncation error of the discretization; the effect of domain shape; and the 

effect of a nonself adjoint operator. 

5.1 Truncation m r .  Let u be the exact solution to the differential problem 

and let uZ’ be the exact solution to  the discrete system defined on an m by m 

mesh on the unit square. If up is the approximate solution at outer iteration k , 

then given some constant c<<l ,  a reasonable measure of performance is the 

smallest value of k for which, 

I 1ur-u: 112 c c I Iu-2 112 5.1 

In other words, when does the error in the discrete solution become dominated 

by the truncation error. Our first test is to  consider this behavior for the simple 

e quati on 

v u  = -1/ 2?TZszn( %)sin( +) 2 2 
with boundary conditions u = O  on x=O and y=O and a vanishing normal deriva- 

tive -on x = 1 and y = 1. The exact solution is au 
an 

u = sin (-)sin( P -y) P 2 2 
Thc test results are plotted in figure 5.1. Each graph plots performance func- 

tions Fmethod,model for a given model and all three methods. The horizontal axis 

is problem size (measured in total number of grid levels) vs. parallel time to 

satisfy equation 5.1 when c was arbitrarily chosen to be Table 5.2 gives the 

detailed dhta for these plots. Also included are the mean spectral radius for 

each outer iteration and an approximate count of the serial complexity. 
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There are several points worthy of note in these results. First, unlike both 

the 3 O - X G  arid LO-MG algorithms, concurrent iteration does not have the pro- 

perty that its spectral radius is bounded independent of n. However for the con- 

stant and log cost communication models, the new dgorithm exhibits enough 

cc.ncur;.ency t o  be substantially laster than the modified serial methods. 
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Muitigrid 

Concument 
It erat ion 

In the case of the linear cost model, a heavy toll is paid for line grid interpo- 

lations. Both the concurrent iteration and the LO-MG scheme do one coarse grid 

interpolation for each outer iteration. As the number of grid levels increases 

the cost of h e  grid interpolations begins to - -  dominate - 

outer iteration, Hence, the method that requires fewer outer iterations, LO-MG, 

will be the fastest. 

the cycle time of each : 

4 ,38522 412 700 934 
5 .38286 610 1202 1920 
6 371 11 765 1715 3461 ~ 

3 .37404 133 247 532 
4 .43387 148 . 340 1108 
5 ,46530 170 466 2464 
6 .51354 206 656 5876 

6 35086 1104 2004 3624 840948 
LO 1 1  3 1 .37936 249 357 429 6540 

29404 
127468 
477300 

11 305 
50468 

232050 
1 123966 

1576 
3968 
8776 
532 

1184 
2720 
6592 

In the case of the linear-VLSI model the weight is on the coarse grid relaxa- 

tions. The RO-MG algorithm is slowest because it makes the the largest number 

of coarse grid iterations. In this model the cost of inter grid communication is 

trivial and Concurrent iteration, exploiting more parallelism than LO-MG, is 

moderately faster (though, for the same reasons given in the linear model, one 

would expect RO-MG to dominate for larger problems.) 

5.2 Domain Shape. A large number of fast solvers are suitable only for problems 

defined on the unit square. In the case of nonconvex domains many of these 

methods, such as the fast Poisson solver, break down. Ideally, a general itera- 

tive method should have its convergence rate largely unaffected by the 

existence of singularities at  interior corners. To test this property consider the 

problem 
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v%L = 1.0 
on the L-shaped domain in Q u r e  5.2. The boundary conditions 

5.2 

R p T e  5.2. Domain ftwpmblem 5.2. 

are that the normal derivative is zero on the outer boundary and the solution is 

constrained to zero near the reentrant corner. The experimental results are 

summarized in table 5.3 below. Because we do not have the exact solution to 

this P.D.E. we considered a M e r e n t  convergence criteria. The methods were 

run until machine precision was reached and the resulting solution, u-, was 

recorded. The solution process was repeated until the Lz error satisfied 

J(ug - uIf112 < 
where the constant was chosen arbitrarily. 

The basic performance profile of the three methods with respect to the four 

models is relatively unchanged. However, there is a change in spectral radius 

behavior. The RO-MG method remains bounded (this is provably the case), but 
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LO 
M U l t i p i d  

the LO-MG method shows a substantial degeneration in convergence rate. 

6 18955 1160 2110 3858 35976 
3 ,18662 285 409 493 7572 2392 
4 ,2571 8 512 872 1178 37868 5968 
5 ,31128 770 1522 2490 170048 13824 

905672 -.-------. 

5.3 Non-self Adjoint Operators. One important use of fast elliptic solvers is as a 

component of an implicit scheme to solve the time dependent problem of the 

form 

L - 6 1 Concurrent  1 3 
Iteration ii 4 

5 
6 

where a,, is an artificial viscosity that is chosen so that on a grid with mesh 

3237,.. 3 gg,o 2249 -- 4751 681 996 SQ3as_ 
.21557 112 208 448 9520 448 
.46492 225 516 1680 76725 1800 
.620 76 338 992 4868 461370 5408 
.68554 409 1294 11564 2233549 13088 

spacing h,, then 

% = O(h) 
At each time step the elliptic equation 

5.3 

must be solved for some function of u on the previous time step. For the 

third experiment we solve the family of problems defined by cr, = 2- and 

f = 1.0 on the domain D in figure 5.4 defined by removing the triangle ~ > g > > z  

from the unit square. This experiment corresponds to advancing the time 

au 
az 

ct,,Q2u + - = f  

1 

dependant problem solution one step. The boundary condition is that u=O on 

aD. 
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Figure 5.3. Domain f o r  problem 3. 

5.3 are the times required to reduce the L, error 

llut - u2 11.. s 10-12. 
Because the operator difTered from the previous problems the inner iteration 

relaxation parameter was optimized to yield a reasonably good spectral radius 

when n = 3 .  As the results indicate, the spectral radius of the concurrent itera- 

tion algorithm degenerates as n increases, but the parallel time for the log and 

constant models continues to be better than for the other schemes. 

6. CONCLUSION 

There are at least two major areas of inquiry left untreated by the preced- 

ing analysis. The first of these is algorithm performance in the case where the 

number of processors is limited. The concurrent iteration algorithm requires 

4 
3 roughly -m2 processors in its fully parallel form to solve a problem on a m by 

m grid. The LO-MG algorithm uses m2 processors. Observe that the serial com- 

plexity for C.I. in experiment 5.1 with m=65 is 1123966, whereas LO-MG requires 

47?300. Based on a zero cost communication model these figures yield a proces- 

sor utilization of 100% lor C.I. but only 15% for the LO-MG scheme. This fact, 

together with an analysis of the algorithms, leads one to conclude that the exe- 

cution time for C.I. wili double if the number of processors is cut in half but LO- 

MG, not fully utilizing its m2 processors all the time, will be slowed to a lesser 
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extent, In fact, LO-MG uses the full array of processors only for fine grid compu- 

tations, i.e. of the time. Based on a remark of M, Hyman, we note the 

4 following interesting hybrid method. Assume we have -p2 processors to solve 3 

log  ( m )  

an m by m ,  m>p problem. Use the LO-MG method on grid levels log (p)+l 

through l og  ( m )  and use C.I. for levels at or below log (p). It can be shown that 

the computation can be arranged so that all communication on grid levels above 

Log (p) is between nearest neighbors and on the lower levels any of the communi- 

cation models of section 4 may be applied. 

An alternative approach in the limited processor case is to consider locally 

refined grids. In a companion paper, [ 113 we show that there is a locally refined 

version of the concurrent iteration algorithm that can use the high levels of con- 

currency to overlap pipelined communication with computation. This paper also 

compares the performance of a systolic band solver to that of the multigrid 

algorithms. I t  is shown that on small problems the direct solver is competitive, 

but for large system the iterative methods seem to be superior. 

The second area not directly considered here is the comparison of direct 

and iterative methods. In the case of 2 dimensional problems of the size of those 

considered in section 5, a band systolic solver [ l B ]  will work in approximately 

Bm2 steps. To derive a similar estimate for concurrent iteration consider table 

5.1 and 5.2. The number of grid levels in a problem of size m is log ( m )  and the 

constant cost model grows roughly linearly in the number of levels. An upper 

bound of 401oy(rn) for the figures in the table multiplied by the time to com- 

plete one fine grid relaxation R yields an estimate of approximately 

40R.”log (m) .  If we assume the communication model is the log cost model with 

one unit of communication equal to one arithemitic operation, then asymptoti- 

cally the time is quadradic in the number of grid levels. A generous upper 
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bound is given by 20&og2(m) + 40R*log(m). If R, the execution time for one 

relaxation, is around 20 steps for arithmetic and communication overhead and 

the grid size m =64, then C.I. in the log model runs in time 5520 vs. 16384 for the 

the direct method. This implies that if the approximations above hold for larger 

values of m, the iterative scheme is substantially faster in spite of the extra 

communication costs. 

For 3 dimensional problems, the situation is even more dramatic. The band 

solver requires roughly m4 processors for the band width mz system based on a 

m by m by m cube. The computation time jumps to 0(m3) .  On the other hand, 

the multigrid algorithms are relatively blind to the dimension of the system. 

The number of processors jumps to 0(m3)  but the time complexity should not 

change much from the estimates above: the value of R will go to around 60 and 

the rates of convergence (reflected in the constants 20, 40) will increase at most 

only slightly. The organization of the parallel algorithms and data structures for 

realistic 3 dimensional problems remains an important open area of research. 
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